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SUMMARY:
In the present work, a deep Bayesian neural network is trained to predict the anisotropic contribution of the Reynolds
stress tensor. The neural network is trained with the Stein Variational Gradient Descent algorithm to generate different
tensor samples. The resulting uncertainty is propagated through a forward Monte Carlo RANS simulation. The training
data are generated via Large-Eddy Simulation of flow past a wall-mounted cube at moderate/high Reynolds number
ReH = 10000 and are assumed as ground-truth. The data-driven prediction based on the different samples enables
major enhancement compared to a baseline RANS simulation as it closely matches the LES. In addition, probabilistic
interval of confidence is also computed for quantities of interest such as the velocity. The uncertainty bounds takes into
account model-form error but also epistemic-form error related to the finite size of the training dataset. The variance
predicted by the model is in-line with prior physical expectations as the largest uncertainty occurs in the wake of the
bluff-body, where the flow is highly turbulent and RANS is known to provide low-accurate predictions.
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1. INTRODUCTION
The use of Reynolds-Averaged Navier-Stokes (RANS) simulations is common in engineering to
model complex flows due to its good trade-off between accuracy and computational cost. However,
a turbulence models is required to close the RANS equations and the latter introduces uncertainty
in the results. This uncertainty can limit the application of numerical simulations in decision mak-
ing. To overcome this issue, several advanced RANS turbulence models have been successfully
introduced for wall-mounted obstacles e.g. (Longo et al., 2017; Parente et al., 2011) for the k− ε

model and (Bellegoni et al., 2023) for k−ω SST.

Recently, the use of data-driven methods to model turbulence as emerged as a powerful tool due to
the increase of computational resources. Data-driven RANS modeling uses machine learning tech-
niques to accurately predict the Reynolds stress tensor. This approach can be used to improve the
accuracy of RANS simulations, especially in complex flows where traditional RANS models may
not perform well. Nevertheless, these approaches have mainly been limited to two-dimensional or
low-Reynolds flows. Furthermore, the use of black-box models increases the need of uncertainty
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quantification. This uncertainty may be related directly to the turbulence model form itself, but also
to the training data/method of the black-box framework. The objective of the present work is to
develop a data-driven framework to reduce the model-form error in RANS simulation of flow past
wall-mounted obstacles while providing uncertainty range for the corrected quantities of interest.

2. PROBLEM FORMULATION AND METHODOLOGY
The Reynolds stress tensor u′u′ can be expressed as the sum of an isotropic contribution, depending
on the turbulent kinetic energy (k), and an anisotropic tensor (b):

u′u′ =
2
3

kI+ kb. (1)

The anisotropic tensor can be re-written as a linear combination of the five strain-rate and rotation
invariants (Λ1:5):

b(s,ω)=
n=10

∑
n=1

C(n)(Λ1:5)T(n) and

{
Λ1:5 =

[
Tr(s2), Tr(ω2), Tr(s3), Tr(ω2s), Tr(ω2s2)

]
T(n) =

[
s, sω −ωs, s2 − 1

3ITr(s2), ω2 − 1
3ITr(ω2), · · ·

] ,
(2)

with s the strain-rate tensor, ω the rotational tensor, T(n) the symmetric tensors and C(n) are the
coefficients of the linear model. For more information regarding their rigorous definitions, the
reader is refereed to the original paper (Pope, 1975).

2.1. Data-Driven Methodology
In this work, we use the same invariant network architecture with a deep Bayesian neural network
(B) as a function approximator to predict the anisotropic tensor as introduced in (Geneva and
Zabaras, 2019):

b = B ([s,ω] ,w) . (3)

The model parameters are treated as random variables such that the weights w have a probability
density function assumed to be fully-factorizable zero mean Gaussian with a learnable precision β

that is Gamma distributed.

The network is trained with the Stein Variational Gradient Decent (SVGD) algorithm (Liu and
Wang, 2016) that minimizes the Kullback-Leibler discrepancy between the true posterior p(w,β |D)
and the variational one q(w|D) in each batch of N i.i.d training data D = bN

i=1:

min
q

KL(q||p) where KL(q||p)≡ Eq(logq(w,β ))−Eq(log p̃(w,β |D))+K (4)

with p̃(w,β |D)) being the unormalized posterior and K the log normalization constant.

The SVGD algortihm approximates a variational distribution by training a set of S independent
neural networks and therefore enables the sampling of the posterior p(wi,βi|D), with i ∈ [0,S]. If
R(b,u(b)) represents the RANS operator, the uncertainty quantification based on a Monte-Carlo
RANS simulation can be obtained following:

Ep(w,β |D) ≈
1
S

S

∑
i=0

R(bi,ui) and σp(w,β |D) ≈

√√√√ 1
S−1

S

∑
i=0

[
R(bi,ui)−Ep(w,β |D)

]2
. (5)



2.2. Neural Network Architecture
The neural network architecture is composed of firstly 3 hidden layers of 200 neurons each and
two tapered layers of 40 and 20 neurons at the end to prevent too small weights. The inputs of the
network are the five invariants and the outputs are the ten coefficients of the symmetric tensors (see
Eq. 2). A Leaky ReLU activation function is used between each layer. The ADAM optimizer is
used to train the networks with a learning rate of 5×10−6. The training data is composed of 10000
sample points that are randomly re-sampled every 10 epochs, for a total of 100 training epochs. As
the computational mesh is well-refined close to the wall-mounted obstacle, no specific probability
density function is used to sample the training points. Finally, a mini-batch size of 20 is used and
the SVGD algorithm is trained for 20 samples. The architecture is inspired by the work of (Geneva
and Zabaras, 2019).

3. RESULTS AND DISCUSSION
The predictive capabilities of the data-driven model are investigated for the flow past a wall-
mounted cube at ReH = 10000, where H is the height of the cube. The computational domain
size is 14H × 7H × 3H where H is the cube height. The latter is discretized with 180× 130× 90
cells for both RANS and LES.

Fig.1 shows a comparison between mean stream-wise velocity components obtained with a base-
line RANS (blue), a LES (purple), the different samples generated via the SVGD algorithm (light
gray) with their associated means (orange) and two standard deviation uncertainty ranges (shaded
orange). A noticeable improvement is made with the Bayesian Neural Network RANS (BNN-
RANS) for both the bulk region and the recirculation zone. Particularly, the predictions of the
BNN-RANS in the wake for x/H < 6 are superimposed with the LES while the baseline RANS
fails to catch the highly turbulent physics. Regarding the far-wake locations, x/H > 6, there are
small discrepancies between the BNN-RANS and the LES while providing a higher accuracy than
the baseline RANS. Those discrepancies occur for z/H < 1 where the flow is expected to be highly
turbulent.

As far as the uncertainty is concerned, the standard deviation in the velocity samples is only notice-
able in the recirculation zone, which is promising. Particularly, the range of uncertainty grows with
x/H, where the discrepancies between the baseline RANS and the LES are the largest. Neverthe-
less, it is worth mentioning that usual uncertainty intervals are represented by the variance rather
than two-times the standard deviation. The present choice is made on purpose for the sake of visi-
bility. If the uncertainty range had been represented with a two variance width, it would not have
been perceptible. This observation confirms that the methodology is robust even for moderate/high
Reynolds.

4. CONCLUSIONS AND FUTURE WORK
This study introduces a Bayesian Deep Learning framework that enables data-driven turbulence
model with uncertainty quantification for wall-mounted obstacles. The preliminary results indi-
cate that the suggested approach may be suitable for high Reynolds flows with adverse pressure
gradient. Particularly, significant improvements have been made regarding the mean stream-wise
velocity component compared to a LES. Besides reducing the model-form error of the baseline
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Figure 1. Normalized mean stream-wise velocity component at six different normalized x-locations on the plane of
symmetry for different turbulence models: baseline RANS, LES, BNN-Samples, BNN-RANS and its uncertainty

bounds. The reader is refereed to Eq. (5) for the notation signification.

RANS model, the network enables the quantification of epistemic uncertainty regarding the train-
ing data and training method as well. The predicted range of uncertainty is in-line with physical
expectations, as the largest variance in the velocity occur in the wake, where the flow is highly
turbulent.

In ongoing work, we are performing this analysis for additional Reynolds numbers and different
geometries. The final aim would be to obtain a data-driven model that generalizes well for different
urban-like configurations.
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